

Luss Engineering

7 GANTON COURT WILLIAMSTOWN VIC 3016

ABN: 39 004 794 325

PH: (03) 9391 4111

sales@lussengineering.com.au

FEA, Capacity and Test Report No: #6062S

Description:

FEA test date: Tuesday, 26 April 2022 Description: Luss Engineering 5t Rail Lifter/Scissors Designer/Fabricator: Luss Engineering Design Standard: AS4991-2004 Study types: FEA, 3rd party Computation, Practical Load Test Capacity Certificate 3rd Party Engineering firm/Lifting Certificate Supplier: Oamps Industries Date: 02/03/23 3rd Party Engineering Analysis serial number: LV424418 3rd Party Engineering Computation Number: OA-LV0613 **Certificate Of Test** Load Test Supplier: Certex/Lifting Victoria Sample Physical Test Date: 02/03/23 Report Number: T63355 Certex Reff: 804093 WLL: 5T Load Applied: 98.10kN

APPENDIX 1: FEA

Apply 49,033.25N to Model #6062S : Luss Engineering 5t Rail Lifter/Scissors 5,000KG

Assumptions:

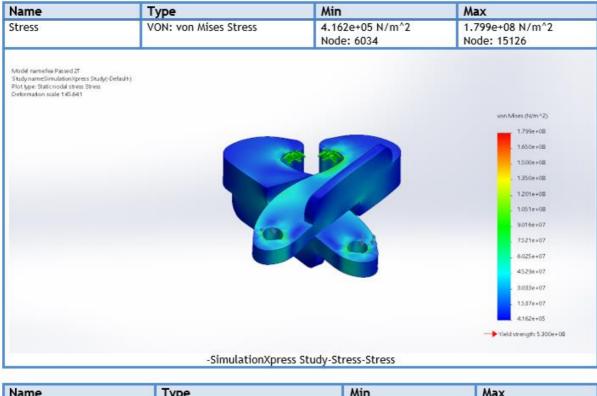
- 1. Fixed points used in model are repeatable in application
- 2. Force is applied uniformly and vertical through model body
- 3. Force is gradual, no impact loads

Model Information:

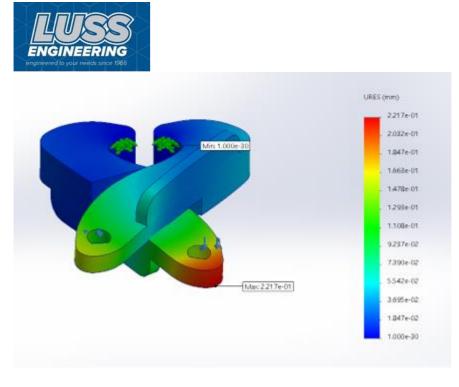
		el name: 60625	
	17.13.23.5 T	onfiguration: Default	
Solid Bodies			
Document Name and Reference	Treated As	Volumetric Properties	Date Modified
6062S	Solid Body	Mass:14.5956 kg Volume:0.00185931 m^3 Density:7,850.02 kg/m^3 Weight:143.037 N	Apr 26 08:59:37 2022

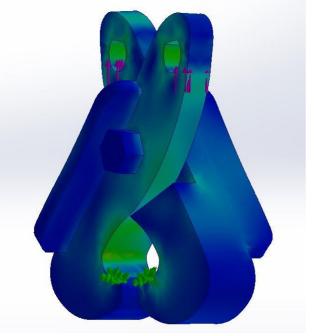
Material Properties

Model Reference	Properties		Components
	Model type: Default failure criterion:	AISI 1045 Steel Linear Elastic Isotropic Max von Mises Stress 5.3e+08 N/m ² 6.25e+08 N/m ²	Main Body X2 (mirrored part)


Loads and Fixtures

Fixture name	Fixture Image	Fixture Details
Lower Face		Entities: 2 face(s) Type: Fixed Geometry


Load name	Load Image	Load Details
Lug Holes		Entities: 2 face(s) Type: Apply normal force Value: 49,033.3 N


Study Results

Name	Туре	Min	Max
Displacement	URES: Resultant Displacement	0.000e+00 mm Node: 271	2.217e-01 mm Node: 13443

Name	Туре	Min	Max
Factor of Safety	Max von Mises Stress	2.946e+00 Node: 15126	1.274e+03 Node: 6034

Conclusion

Model #6062S Passed Finite Element analysis with a Factor of safety

(FOS) = 2.94

Luss Engineering – Report 6062s

APPENDIX 2: 3rd Party Engineering

Navin Kumar Lifting Victoria 19 Industrial Place Breakwater, Victoria 3219

Dear Navin,

Please find the following design verification for the Luss Engineering 5t Rail lifter which has been rated to Maximum Rated Capacity (MRC) of 5t, it is recommended carry out proof load testing to at least 2x MRC to validate strength of connections and associated structures.

This Rail lifter has been checks and is correct

Notes:

- Visual inspection is required prior each use.
- Pre-use check list needs to be completed before commencing any work.
- Safe work method needs to be always in place.

Kind Regards

Rohan Hamer

CAPACITY CERTIFICATE

Equipment Description:			Luss Engineering 5t Rail lifter
MRC:	5t	Manufacturer's name:	Luss Engineering
Serial No.:	LV424418	Date of manufacture:	02/2023
Group:	N/A	Design Standard:	AS4991-2004
Computation number	OA-LV0613		

Owner's name	: Luss Engineering	Contact:	Rhys Denman	
Address:	7 Ganton Ct, Williamstown VIC 3	3016		

Engineer	Rohan Hamer	Company Oamps Industries
Address:	19 Industrial PI, Breakwater VIC 3219	
Telephone No.:	0433147467	Email: rohan.hamer@certexlifting.com.au

The Rail Lifter detailed above and on the referenced documents meets the design capacity requirements of AS4991

1hh

Rohan Hamer – Senior Engineer

Date: 02/03/2023

MARKING

The Rail Lifter is to be clearly marked with the following information, as appropriate in accordance with AS 4991:

- 1) Identification / serial number
- 2) Rated capacity (5t)

APPENDIX 3: DESIGN VERIFICATION CALCULATIONS

5T Rail grabber Computational analysis.

Shackle lug failure

Allowing for a minimum Pin diameter of 16mm for 3.2T shackle minimum

	Shackle Lug Failure			
Symbol	Parameter	Value	Unit	
	Input load	5000	kg	
	Impact factor	1.5		
	Design load	7500		
Dh	hole diameter	30	mm	
Dp	Minimum pin diameter	16	mm	
R	edge distance	33	mm	
r	radius of curvature of edge of lug	100	mm	
а	distance from edge of hole to edge of lug	18	mm	
t	thickness	25	mm	
Z	loss in shear plane length due to curvature at end of lug	0.01653		
φ°	shear plane locating angle	40	Degrees	
St	Yield strength of material	350.0	Мра	
Su	Ultimate Shear Strength (conservative)	14.2759	kg/mm2	
Sb	Ultimate Bearing Strength (conservative)	21.4139	kg/mm2	
As	Shear area	986.97	mm2	
Lsp	Length of shear plane	19.74	mm	
Abr	Bearing Area	400	mm2	
	Results		ſ	
	Shear limit	14089.9	kg	
	Factor of safety	1.87866		
	Bearing limit	8565.56	kg	
	Factor of safety	1.14208		

Pivot Bolt Shear

Assume loads at both ends applied perpendicular to plane, to give worst case single plane shear Maximum design loading for shear plane = 98.1kN

Bolt in Si	Bolt in Single Shear				
Symbol	Parameter	Value	Unit		
	Bolt Type	M24			
	Bolt Strength Class	8.8			
	Shear plane Load	98.1	kN		
	Tensile Stress Area	353	mm2		
fub	Ultimate Tensile Strength	800	N/mm2		
d	Diameter of Shank	24	mm		
d0	Diameter of Holes	26	mm		
γM2	Partial Factor (Bolts)	1.25			
γM3	Partial Factor (Slip Resistance)	1.1			
dm	Mean of Across Flats & Points	38.7846	mm		
tp	Thickness of Plate	26	mm		
fup	Ultimate Strength of Plate	350	N/mm2		
Results			L		
	Tensile Resistance:	203.33	kN		
	Shear Resistance - Single Shear:	135.55	kN		
	Factor of Saftey	1.38177			
	Punching Shear Resistance:	532.22	kN		

Hook/Curved beam failure

Symbol	Parameter	Value	Unit
r _i	internal radius	25	mm
r _o	External radius	104	mm
b	Section width	50	mm
	Yield Stress of Lug	350	Мра
F	Force applied	50	kN
r _c	Centroidal radius	64.5	mm
r _n	Neutral axis radius	55.42	mm
e	distance of NA from centroidal axis	9.08	mm
М	Moment at critical section	3225	kN/mm
А	Area at critical section	3950	mm^2
	Results		
Stress at inner edge		122.07	Мра
Factor of safety		2.86720734	

Stress at outer edge		
	39.96	Мра
Factor of safety	8.758758759	

APPENDIX 4: LOAD TEST CERTIFICATE

LEEA Accredited Laboratory Number 1305 This document is issued in accordance with LEEA's accreditation requirements. The results of the tests included in this document are traceable to Australian/Nationalstandards. This report shall not be reproduced except in full.

Certificate of Test

Issued To				Repo	Report No Report Date Our reference		T63355 02 Mar 2023 804093		
QTY	EQ ID		Description		Effec	tive	WLL	Load	
					Leng	th		Applied	
1	LV4244	118	RAIL LIFTING CLAMPS, FABRI ENGINEERING, TARE: 15KG, V		NA		5.0T	98.10kN	

Test Notes (if any) LOAD TEST CARRIED OUT. PASS

CLIENT TO ENGRAVE THE SERIAL NUMBER, TARE WEIGHT, WLL AND DATE OF TEST.

Test Specification: AS4991 - 2004 -

LIFTING DEVICES

After removal of the load, each item was examined by a competent officer and found to be free from permanent set flaw or visual defect.

The above articles were examined by a competent person and we hereby certify that:

(a) A careful examination of each of the articles listed above was carried out.

(b) After the application of the proof load each of the articles tested was found to have withstood the load without sustaining damage that may affect its intended function or safety and is free from any deleterious

permanent set or visible defects

Approved signatory Officer: Navin Kumar

Darnkung

Testing Officer: Navin Kumar

Lifting Solutions Group

Avel Johnson International

Certex Lifting Pty Ltd Head Office: 33 Prosperty Avenue Wangara WA 5055, Australia Phone +51: 8 3408 3099 sww.certex5fting.com au

ABN: 48-098-941 578

Adelaide + Bibre Lake + Coffs Harbour + Geelong + Kalgoorie + Melbourne North + Melbourne West + Newcastle + Perth + Port Hedland

General Maintenance and inspections.

- Visual inspection is required prior each use.
- Pre-use check list needs to be completed before commencing any work.
- Safe work method needs to be always in place.
- Pivot Bolt must be inspected prior to each use.
- If any Damage or excessive wear to Pivot bolt Rail Lifter must be repaired. Its Suggested to replace bolt at regular intervals by suitable persons.
- If any Damage or excessive wear to Curve Beam, it must be reported, and decommissioned. Then, Rail Lifter is assessed by appropriately qualified persons for repair or disposal.